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The non-linear oscillations of a nearly-integrable time-periodic Hamiltonian system with one degree of freedom are studied in 
the neighbourhood of its equilibrium position. The case when the multipliers of the linearized system are multiple is considered. 
Using a canonical change of variables the Hamiltonian function is reduced to a simpler form reflecting the resonant nature of 
the problem under consideration. An approximate result is considered in detail; some of the results are extended to the complete 
system. A rule is established which enables one to use the nature of the dependence of the non-lincar oscillation frequencies on 
the amplitude in the unperturbed system to distinguish between the boundaries of the parametric resonance domain at which 
the equilibrium position is stable from those boundaries at which it is unstable. In the unstable case an estimate is given of the 
size of the equilibrium neighbourhood to which the trajectory of a perturbed system is confined. The existence of stable periodic 
motions is demonstrated in the neighbourhood of an unstable equil~rium position. The stochastic behaviour of the system is 
discussed. A number of examples of the application of the general results to specific problems in mechanics are considered. 

1. S T A T E M E N T  O F  T H E  P R O B L E M  

Consider a system with one degree of freedom whose motion is described by ordinary Hamiltonian 
differential equatkms with a Hamiltonian representable in the form of a series in a small parameter e 
(0 < e '~  1) 

H = Ht°)(x,y)+ ~,EkH(k)(x,y,t) (1.1) 
k=l 

Let x = y = 0 be the equilibrium position of the system, and suppose that the functions/./(k) (k = O, 
I, 2 .... ) from (1.1) can be represented in the form of series 

H (k) = Hi2 k) + H ( k ) +  + H ( k ) +  3 "" m "'" 

where H(m k) is a form of degree m in x, y. When k = 0 the coefficients of these forms are constant, and 
when k ~> I they are continuous and 2g-periodic in t. 

We shall assume that when e = 0 the equilibrium x = y = 0 is stable. We will denote the oscillation 
frequency of the linearizcd system by co (to > 0). By an appropriate choice of variables x,y, accomplished, 
for example, by a Birkhoff transformation [1], the function H xw can be written in the form 

. ' ° ' =  + + ÷ o ( ! :  + ?)') (1.2) 

We assume that the quantity c in (1.2) is non-zero. 
Supposing that this choice of variables x, y has already been made, we introduce new variables q, p 

with the help of the canonical transformation x = ev2q, y = E1/2p. We then obtain a new Hamiltonian 
function of  the form 
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n= ~t0(q 2 + p2)+E[~c(q2 + p2)2 + .(2,)(q,p,t)]+ 

'3/2 r-/(l) t',', p,t)+O(E 2) 
u 3  ~W' (1.3) 

Without loss of generality we assume that the mean values of the functions/-/2(1),//3(1) with respect 
to the explicit time variable are zero. 

Suppose that the linearized system has a parametric resonance 2o) -~ N, where Nis  an integer. Using 
a linear 21t-periodic in t canonical change of variables q, p -~ u, v that is nearly an identity, the 
Hamiltonian (1.3) can be reduced to the form [2] 

H = ~ to(u 2 + x) z ) + ~[ I//4c(u2 + so 2 )2 + i~ (I¢1 sin Nt - I¢ 2 cos Nt)(u 2 - 1~ 2 ) + 

+(Kj cos Nt + ;¢2 sin Nt) ux)] + e 3/2 H~l)(u, x), t) + O(e  2) 

Here 

1 2 i 2 
~| =--2n oi~hlt c°sNt-(h°2 -h2°)sinNt]dt' K2 ='~'g ~h | |  sinNt +(ho2 -hzo)cosNt]dt 

(1.4) 

The quantities hij = hij(t) are coefficients of the quadratic form H2(1) from (1.3)://2(1) = h20q 2 + h11qp + 
h02P 2. 

Let N - 2o) = 2e~i. Changing to the canonically conjugate variables ~, R by the formulae 

u = (2R) Y: sin(¥ + Wo + Nt/  2), u = (2R) y~ cos(W + ¥o + Nt 1 2) 

sin 2V0 = 1¢ lie -t , cos 2W0 = ~ 2  K:- |  , r = ( I~  2 + t; 2)~ 

we obtain the Hamiltonian 

H = ¢(-BR + gRcos2¥+cR2)+¢~H~ t) +O(F. 2) 

Here the function/./_(i) is expressed in terms of V, R. 
We perform yet another canonical transformation ¥, R ~ O, p. 

R = Ic[c[ -i p, V = o~ + (I - a)Tt / 4 (o = signc) 

and change to a new independent variable x = e~. In the new variables the motion is described by the 
equations 

de / dx = / dp / dz = / ae 

with a Hami l ton ian of  the fo rm 

7 = 7o(0 ,P)+  e J671 (0 ,p , x )+  O(e) 

Yo = -StP + P cos 20 + p2, 7= = ctc-ZH~ I), St = a~g  -t 

(1.5) 

(1.6) 

In the Cartesian canonically conjugate variables Xl = (2p) 1/2 cos 0, x2 = (2p) 1/2 sin 0 we have 

To = ~ [ ( ~ -  I) x2 + (st+ I)x~]- ¼(x 2 + x2) 2~ (1.7) 

The equilibrium position x = y = 0 of the original system corresponds to the solution of Eqs (1.5) 
in which p = 0. It follows from (1.5)-(1.7) that when the inequality [ St I < 1 is satisfied the equilibrium 
position is unstable for sufficiently small e. This inequality specifies the domain of parametric resonance 
in the first approximation with respect to e. If, however, [ St I > 1, it follows from known results [3, 4] 
that for sufficiently small e the equilibrium position x = y = 0 is stable. 

This paper investigates the behaviour of the system at the boundary of the domain of parametric 
resonance, when St = 1 or -1. Here it is assumed that the mean value of the function 71 from (1.6) with 
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respect to the explicit argument x is zero. This assumption is always satisfied when N is odd. If however 
N is even this average can be non-zero; and this case requires a special investigation. 

2. S T A B I L I T Y  AT T H E  B O U N D A R Y  OF THE P A R A M E T R I C  
R E S O N A N C E  D O M A I N  

Let ~t = 1. Then 

In Yl, Y2 variables introduced by means of the equalities 

x2 = t)S l t)xl , Yl = aS I Oy2 

where 

s =  x,),, ÷ + 'A 

we have 

= y ~ -  Z y  4 +O((y21 + y22)~ ) "to 

When e ~ 0 we use a real canonical normalizing change of variables e v2 that is analytic in 0, p ~ zl, 
z2 to reduce the Hamiltonian (1.6) the form 

.tO = Z22-all 4Z41 + ~ ( Z  2 + Z~) ~)  (2.1) 

The normalizing change of variables is 2n-periodic in t if N is even and 4g-periodic if N is odd. The 
real coefficient al in (2.1) tends to unity when e ~ 0. The position of equilibrium x = y = 0 corresponds 
to the equilibrium Zl = z2 = 0 of the transformed system with Hamiltonian (2.1). 

We will demonstrate the instability of the equilibrium. To do this we consider the function V = zlz2. 
By virtue of the equations of motion with Hamiltonian (2.1) we obtain the expression 

dV I dr, : a|z 4 + 2Z 2 + O((z 2 + Z~ )~) 

for its derivative. 
Because the function dV/dx is positive-definite and V is not sign-constant, as opposed to dV/dx, the 

first Lyapunov instability theorem [5] implies that the equilibrium zl = z2 = 0 is unstable. 
This result was obtained previously in [6, 7] by other means. 
We will now consider the second boundary of the parametric resonance domain, specified in the first 

approximation in r by the equation ~t = -1. In this case 

. t0 - ' / , ( #  ÷ 

and like the case p. = 1 considered previously the Hamiltonian (1.6) can be reduced to the form 

= -Z21 - I/4a2z ~ + O((Z21 + z 2)~) Y (2.2) 

where, for small e, the constant coefficient a2 is nearly equal to unity. According to [7] this implies the 
stability of the equilibrium Zl = z2 = 0. This also follows from Section 4 of the present paper (see below). 

Thus, as far as stability is concerned, one boundary of the parametric resonance domain is significantly 
different from the other: the equilibrium position x = y = 0 is stable at one and unstable at the other. 
From this one obtains a simple rule allowing one to determine which of the boundaries of the parametric 
resonance domain has stability, and which has instability. 

The boundaries .t± of the domain of parametric resonance in the first approximation in e are given 
by the equalities ¢0 = N/2 ± e~:. On .t+ and .t_ we have ~t = - 6 and ~t = a respectively. If the system is 
such that when e = 0 the frequency of small non-linear oscillations decreases as the amplitude increases, 
i.e. in (1.2) the coefficient c < 0 (a system "with a soft restoring force characteristic"), then we have 
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Ix = 1 on % and Ix = - 1 on  T-, and consequently the equi l ibr iumx = y = 0 is unstable on % and stable 
on  T-. If  however  the f requency of  small non-linear oscillations increases as the ampli tude increases, 
i.e. the coefficient c > 0 in (1.2) (a system with a "hard restoring force characteristic"), then the converse 
is true: the equilibrium x = y = 0 is stable on T+ and unstable on T-. 

3. E X A M P L E S  

Oscillations o f  a non-linear conservative system under the action o f  external periodic forces. Consider the stability 
of forced periodic oscillations in a system whose motion is described by the equation 

Z+032Z+ff.Z2 +~Z 3 = esint (3.1) 

where to, ct, 5 and e are constants, co is not an integer, and 0 < e ,~ 1. 
According to the Poincar6 method [8], for sufficiently small e Eq. (3.1) has a unique solution z = f(t, e) that 

is analytic in e and 2~-periodic in t, which reduces to the solution z = 0 when ~ = 0. It can be represented by a 
series 

f ( t )  = - - - ~ _  1 sin t+... 

To investigate the stability of this solution we put 

z = f ( t )  +¢~¢0-~x, ,  .~, = toy, 

The equations of the perturbed motion have Hamiltonian form with Hamiltonian 

= ½03~2 + y.~)+ ~a03-~x~ + 

+e[ct~-I (032 _ I)-I sin t x, 2 + 1~803-2x4 ]+ 0(~ "~ ) (3.2) 

Let 2c0 -~ 1. The Deprit-Hori method [9] can be used to construct a canonical transformation x., y. ~ u, 
which reduces the Hamiltonian (3.2) to the form (1.4). Here N = 1, and the coefficients c, lq and ~:2 are computed 
to be 

9&o 2 - 10¢t 2 0t 
c =  K I = , K 2 = 0  

2403 4 ' 203(03 2 - I ) 

In the first approximation in e the boundaries % of the domain of parametric resonance begin at the point (1/2, 
0) in the 03, e plane and are given by the equations co = 1/2 __. 4/3e Ict I. 

From the rule obtained in Section 2 we find that for sufficiently small E the periodic solution z = f(t, e) is stable 
at the boundary T+ if 5 > 40~2/9 and unstable if S < 40~2/9. On y_ we have the opposite situation: we have instability 
if ~ > 400~2/9 and stability if ~ < 40cte/9. 

A pendulum with a vibrating point o f  suspension. Suppose that the point of suspension of a mathematical pendulum 
of length I performs harmonic oscillations in the vertical direction with amplitude a and frequency f~: Zo(t) = 
a cos D.t. The equation of motion of the pendulum has the form 

d2q / drl 2 +(03 2 + Ecosl))sinq = 0 (3.3) 

where q is the angle of inclination of the pendulum to the vertical and rl = D.t, 032 = g/(f~Zl) ' ~ = a/l. 
The solution q = 0 corresponds to the vertical equilibrium position of the pendulum. The linear problem of the 

stability of this equilibrium reduces to a Mathieu equation. This equation has been thoroughly studied. In particular, 
the entire 03, e plane has been subdivided into domains of stability and instability in the linear approximation (the 
Haynes--Strett diagram) [10]. The domains of instability (domains of parametric resonance) originate at the point 
(N/2, 0) of the e = 0 axis. For co, e in these domains equilibrium q = 0 is also unstable in the strictly non-linear 
formulation of the problem, which follows from the Lyapunov theorem on stability in the first approximation. 

We shall consider the problem of the stability of the equilibrium q = 0 for values of to, and ~ that do not 
lie inside the parametric resonance domains. We shall assume that the quantity e is small. Equation (3.3) 
corresponds to the Hamiltonian 

H = l/~p2 _({o2 +tcosTi)cosq (3.4) 

Note that the series expansion of H has no third-order terms in q and p, and that in the expansion (1.2) for 
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Hamiltonian (3.4) the coefficient c = -1/16 ~ 0 [11]. From this, using stability theory for Hamiltonian systems with 
one degree of freedom [2] we conclude that inside the linear stability domain the q = 0 equilibrium is indeed stable 
for sufficiently small e. 

It remains to consider the boundaries of the domain of parametric resonance. We take the domain originating 
at the point (1/2, 0). In the notation of Section 2 its right-hand boundary is the curve y+, and the left-hand boundary 
the curve y_. Because c < 0, when e is small the equilibrium q = 0 is unstable at y+ and stable at y_. 

For domains of parametric resonance originating at the points (N/2, 0) when N/> 2, the result is similar: there 
is instability at the fllght-hand boundaries of these domains and stability at the left-hand ones. 

4. O S C I L L A T I O N S  OF THE U N P E R T U R B E D  SYSTEM 
IN THE CASE Ix = -1  

If terms of order e 1/2 and above are ignored in the Hamiltonian (1.6), we obtain a system with 
Hamiltonian To. V~ shall call this the unperturbed system. We shall investigate non-linear oscillations 
of the unperturbed system at the boundaries of the parametric resonance domain. We shall first consider 
the boundary which in the first approximation in e is specified by It = - 1. 

In this case Eqs (1.5) with Hamiltonian y = To have the energy integral 

p2 + 2pcos 2 0 = h (4.1) 

The phase trajectories in thexl,  x2 plane are shown on Fig. l(a). For comparison Fig. l(b) shows the 
phase portrait of the linearized unperturbed system. 

In the linear system any point of the Ox2 axis is an equilibrium position; when xl ~ 0 the trajectories 
are straight lines parallel to the Ox2 axis; the origin of coordinates is unstable. 

In the non-linear system the trajectories are closed curves along which p = (cos40 + h) 1/2 - cos20 
(h > 0). Only one equilibrium position exists- the origin of coordinates, corresponding to h = 0. When 
h > 0 we have P2 :~< P ~< Pl, where Pl = hl/2, P2 =(1 + h) 1/2 - 1. The differential equations (1.4) are 
integrated using elliptic functions. Calculations show that 

P2 +plsn2(u,k)+P2cn2(u, k) 
PfPm Pl +p2sn2(u,k)+pjcn2(u, k) 

k 2 = I/2(1 - h~J(i +h) -~ ) ,  u = 2h¼(1 + h)¼('r+ go) 

(4.2) 

(4.3) 

The quantity x0 i:s an arbitrary constant. For known p(x) the function 0(x) is found from integral (4.1). 
The frequency c f non-linear oscillations is given by 

(a) (b) 

Fig. 1. 

xt  

i 



546 A.P. Markeyev 

(o = rd~¼(I + h) )~ K -~ (k) (4.4) 

where K(k) is a complete elliptic integral of the first kind. 
The unperturbed Hamiltonian % can be written in action-angle variables. It is then just a function 

of  the action I: 70 = h(/). We shall verify the non-degeneracy condition for 70. We have 

d2 h dto dto 7t 2 [ dK ] = = t o m =  , 2kK(l+h))~(l+2h)+h Y2 > 0  (4.5) 
dl 2 dl dh 8kh~ (I + h)K .~ dk 

The unperturbed Hamiltonian function is therefore non-degenerate. 
When h ---> 0 the oscillation frequency (4.4) tends to zero 

to ~ bh ~ (b = nK-~ (a[-2 / 2) = !,694) (4.6) 

Consequently, when 0 < h ,~ 1 (a small neighbourhood of the origin of coordinates xl = x2 = 0) we 
have 

h =  (3b114) ~, dZhldl2= ~(3bl4)~Jl-~bO 

By virtue of the non-degeneracy of % and by Moser's theorem on invariant curves {4] we find that 
the x = y = 0 equilibrium position, which is unstable in the linearized problem for the original system, 
is in fact stable. This result was previously obtained by a somewhat different method in [7]. 

5. O S C I L L A T I O N S  OF T H E  U N P E R T U R B E D  S Y S T E M  
IN T H E  CASE ~t = 1 

When ~t = 1 the unperturbed system has the integral 

p2 _ 2psin 2 0 = h (5.1) 

The phase portrait is shown in Fig. 2(a). The phase portrait of the corresponding linearized system 
is shown in Fig. 2(b). There, every point on the Oxl axis is an equilibrium, and when x2 # 0 the phase 
trajectories are straight lines parallel to the Oxl axis; the origin of coordinates is unstable. 
As was shown in Section 2, it is also unstable in the perturbed system (1.5). 

We consider in detail non-linear oscillations of the unperturbed system. Motion is impossible when 

(a) ,.~¢'2 (b) 

Fig. 2. 

0 0 

I l l  

0 0 0 0 
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h < - 1. The value h = - 1 corresponds to equilibrium positions P1 and P2 for which x I = 0 ,  X 2 = 

__. ,/2; the points P1 and P2 are centres in the phase plane. 
I f - 1  < h < 0 (oscillation domain) the phase trajectories are closed curves encircling the singular 

points P1 and P2. Here  P2 ~< P ~< Pl, where Pl = 1 + (1 + h) lt2, P2 = 1 - (1 + h) 1/2. The solution p(x), 
0(x) of Eqs (1.5) can be expressed in terms of elliptic functions. We have 

P = ~ I - d cn(u, k) (5.2) 
I + dcn(u, k) 

where 

k2 = ~ ( i - x / ~ ) ,  d =.x/ l"~/( l  + . ~ ) ,  u= 2-~( -h)¼( ' t  +'¢o) (5.3) 

and the function 0(x) is determined from (5.1) and (5.2). The oscillation frequency is given by 

to = - ~ t ( - h )  )~ r -I (k) (5.4) 

When h ---> 0 the frequency tends to zero 

to= . ~ b ( - h )  ~ (5.5) 

where b is the quantity in (4.6). 
When h ---> -1  we obtain the frequency of small oscillations in the neighbourhood of P1 or P2, equal 

to 2,/2. 
In action-angle variables we have Y0 = h(/). Calculations show that 

dl 2 = - 4 k . ~ K 3  2kg + ~ < 0 (5.6) 

The Hamiltoniaxt of the unperturbed system is therefore non-degenerate in the non-linear oscillation 
domain in the neighbourhood of  the/ '1 and P2 equilibria. In particular, near these equilibria we have 

h = - I  + 2~/21- ~ 12 +O(13) 

When h > 0 (rotation domain) the phase trajectories enclose all three singular points: P1, P2 and 
the origin of coordinates (Fig. 2a). Here P2 ~< P ~< Pl where Pl = 1 + (1 + h) v2, P2 = hl/2, 
and 

p = p 2 A + / A _  

A± = (Pt - 1)+(02 + l)snZ(u,k)+ (Pl - I)cn2(u,k) (5.7) 

The quantities u, k and to are given by formulae (4.3) and (4.4). By virtue of (4.5) the unperturbed 
Hamiltonian is non-degenerate. When h ---> 0 relation (4.6) holds. 

The value h = 0 corresponds either to the origin of coordinates equilibrium or to the separatrices 
separating the oscillation and rotation domains on Fig. 2(a). The separatrices are c i rc les~ + (x2 --- 1) 
= 1 from which the point xl = x2 = 0 has been removed. On the separatrix lying in the upper half- 
plane we have (taking p(0) = 2) 

2 ! 2x 
- -  -- ( 5 . 8 )  p l + 4 x  2, s in0= , cos0 ~/l+4x 2 

The corresponding solution for the separatrix lying in the lower half-plane of  Fig. 2(a) is obtained 
from (5.8) by replacing 0 by x + 0. 

6. N O N - L I N E A R  O S C I L L A T I O N S  OF T H E  P E R T U R B E D  S Y S T E M  

We shall explain how the results obtained in Sections 4 and 5 when investigating non-linear oscillations 
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of the unperturbed system with Hamiltonian Y0 can be extended to the full system with Hamiltonian y 
from (1.6). 

Outside a sufficiently small neighbourhood of the origin of coordinates and (when IX = 1) the 
neighbourhoods of the separatrices, the function y written in action-angle variables is analytic, where, 
as follows from Sections 4 and 5, its unperturbed part Y0 is non-degenerate. Hence [12] most dosed 
trajectories in Figs l(a) and 2(a) generate conditionally-periodic motion when 0 < e ~ 1. The Lebesgue 
measure of the completion of the set of these generating trajectories is of order [13] exp(--cle -1) (where 
cl > 0 is a constant). 

As has been previously remarked, the position of the equilibriumx = y = 0 on the Ix = -1 boundary 
of the parametric resonance domain is stable in the full perturbed system, and unstable at the boundary 
Ix = 1. But, as follows from Section 5, in the latter case system trajectories that begin sufficiently dose 
to the origin of coordinates remain in a bounded neighbourhood of the origin (because then for all x 
the quantity p(~) does not exceed a quantity close to 2). 

According to Poincar6 method for the theory of periodic motion [8], the equilibrium positions 
P1 and P2 for the unperturbed system with Hamiltonian Y0 when 0 < e ,~ 1 become 2re-periodic in t (if 
N is even) or 4g-periodic in t (fiN is odd) motions of the full system, where, in view of the non-degeneracy 
of Y0, from Moser's theorem on invariant curves [4] these periodic motions are stable. 

When IX = 1 the unperturbed system has four asymptotic trajectories: two of them tend to the origin 
of coordinates when x ~ +** and two of them do the same when x --~ -** (Fig. 2a). As follows from 
[6, 14], in a sufficiently small neighbourhood of the origin of coordinates these four asymptotic 
trajectories also exist in the full system. 

If, however, the asymptotic trajectories are pairwise confluent in the unperturbed system, forming 
separatrices, then in the full system the separatrices in general decouple [12], and there is a stochastic 
layer in their neighbourhood [15]. 

Using Chirikov's method [16, 17] we shall obtain an estimate of the width of the stochastic layer. 
First, following [18], we find the separatrix map for system (1.5) with the full Hamiltonian (1.6). We 
write the general solution of the unperturbed system in the form 

p = p(x+o,h),  0 = 0(x+t~,h) (6.1) 

where o and h are arbitrary constants and h is the constant of the integral (5.1). If we ignore quantities 
of order e and above, then for the variables o and h, which are slowly changing functions of x in the 
perturbed problem, we obtain [18] the system of equations 

dh l dx  = e.~ C Y o , y , ), d a  l dx = e ~ ~y i / Oh (6.2) 

where (Y0, Y1) is the Poisson bracket. On the right-hand sides of Eqs (6.2) the quantities 0 and p are 
expressed in terms of a, h and x in accordance with (6.1). 

Suppose that h0 and a0 are the values of h and o at x = 0. Over a time interval equal to one cyde of 
motion near the separatrices, the quantities h and 6 take the values hi and 61. The mapping h0, o0 
hi, 61 is also a separatrix map. 

Considering trajectories sufficiently close to a separatrix, one can put h = 0 in the right-hand sides 
of the system of equations (6.2). Here, according to (5.5), the length of a single cycle of the motion 
near the separatrix is approximately equal to d(2)n b-ll h 1-1/4. As in [18] we find that the separatrix 
mapping will be approximately given by 

hi = ho + el/2G(oo), 61 = ao + ~/(2)rc b-lj hi 1-1/4 (6.3) 

where 

G(°0 ) = ~ (Yo (0, p>, y, (0, p, z - o0))dr (6.4) 

and after calculating the Poisson bracket in the integrand the quantities 0 and p should be replaced by 
their expressions from (5.8) (for separatrices lying in the upper half-plane of Fig. 2a). 

We represent the function T1 from (1.6) in the form 

YI = P (fl sin e + f2 cos 0 + f~ sin 3e  + f4 cos 30)  (6.5) 
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~(i) oskX f i =~__ l (a~ i ) s inkX 'c+okc  x) (X = (2Elc) -| ) 

Calculations them. show that 

= 2kX(c, +d k ) - k  X ( c  k G(,ffo)=~2-.Sl2~.t~.k[4c~!, + (1) (21 ' -5 O)+d~4))le-k~./2 

where 

c(ki) = a(~ i) cos k ~  o + b(k i) sin kXo o, d(k i) = - a  (i) sinkXo o + b(k i) cos kXG o 

(6.6) 

(6.7) 

(6.8) 

Suppose that the smallest value of k which is actually present in the series (6.7) is q (q I> 1). Then 
for small e one can write 

G(O 0) = gsin(q2kO 0 + 5! )~/'e-q~'/2(l + 0(~. -r~ )) (6.9) 

where g, 51, ~2 are some numbers, 52 ~ 1, and p is one of  the numbers 1, 2, 3. 
If instead of  o we introduce the variable ct = qko  + 5, then for small E the mapping (6.3) can be 

approximately written in the form 

h I = h 0 + I~lt2gXPe -qx12 sin(x o, oq = ¢t 0 + ~/2rtqb-IXlh, 1-¼ (6.10) 

At the stationary points of  this mapping the value of cc is either 0 or ~, and 

h = h ,  = + ~ ( q X l ( b n ) )  4 ( n = l , 2  .... ) 

h =/1. - 2~/~-~bq-~7~-~h, lh.I ¼ P 

Putting 

we linearize the mapping (6.10) with respect to P in the neighbourhood of  the stationary points. We 
obtain the standard [17] mapping of the form 

PI = Po + Ksino~o, et, =ao  + P I 

where the stochastieity parameter is given by the formula 

g = - ~  2 -'~ ra,-'Xqh.-'lh.I -y' ~.P+'e -'~n 

According to [16, 17] an estimate of the width of the stochastic layer can be obtained from the condition 
I K I > 1. (One must, however, bear in mind that there is no strict justification for this condition, and 
so the estimate of  the width of the stochastic layer here and at the end of  the following section does 
not have a strict mathematical basis.) We have 

4 5 . Ih.I < (~421xlq/( 4b))'/' ~.'<'+'"'~e -2'~'' 

From this it follows that the width of the stochastic layer is of  the order of 

~-q exp(-c3~-I), rlle c z = 2 ( 2 p + ! ) 1 5 ,  c 3 =q/ (SK) .  

7. E X A M P L E  

On the stochastieity of modons near to eccentric satellite orbits. The plane motion of a solid about its centre of 
mass in an elliptic orbit is described by the equation [19] 

d28 d~ 2 
(! +~cosv)-~-y-2~sinV~v +oo sinScos~ = 2tsinv (7.1) 
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where e is the eccentricity of the orbit of the centre of mass of the body, v is the true anomaly, co 2 = 3(C - A ) / B ,  
andA,  B and C are the principal central moments of inertia of the body (moment of inertia B corresponding to 
the axis perpendicular to the orbital plane); 8 is the angle between the radius-vector of the centre of mass of the 
body with respect to the gravitationally attractive centre and the axis corresponding to the moment of inertiaA. 

For a circular orbit (e = 0) Eq. (7.1) has a solution corresponding to a relative equilibrium of the body. In an 
elliptical orbit this equilibrium turns into periodic ("eccentric") oscillations. If co ~ 1 and the orbital eccentricity 
is sufficiently small, the eccentric oscillations are described [19] by a solution of Eq. (7.1) of the form 

2£ 
~i = G, = ---T~_ i sin v+... (7.2) 

which is analytic in e. 
The stability of this solution has been investigated in detail [19, 20]. In particular, it has been shown [19] that if 

the inequality 

- 3~/8+.. .< to < ~ + 3 ~  18+... (7.3) 

is satisfied, then for sufficiently small e the eccentric oscillations are unstable. 
We investigate the stability of solution (7.2) and non-linear oscillations in its neighbourhood for values of co and 

corresponding to the boundaries of the parametric resonance domain (7.3). We put to -- ¥2 + 31H8+ . . . .  In the 
notation of Section 2 we have ~t = 1 and !1 = -1  at the boundaries % and y_ respectively. 

In a neighbourhood of solution (7.2) we represent Eq. (7.1) in Hamiltonian form. To do this we put 

~i=~. +e~to-~(l+ecosv)-l~, rl=to-ld~Idv 

In ~, TI variables the equations of motion have Hamiltonian form. With ~ as the coordinate and rl as the momentum 
the Hamiltonian has the form 

H -- ~ to( ~2 + 112 ) + I~(~ cos v~ 2 - 1~4 ) + e ~  ( 8 ~  sin v/9)~3 + O(e 2 ) (7.4) 

Using the Birkhoff transformation ~, 11 --~ q . p  we normalize in (7.4) the terms that do not depend on v. We 
then obtain the Hamiltonian (1.3) in which H2 Ily = 3/4cos vq 2, H30) = (8`/(2) sin v/9)~ 3, c = -1/4. 

We have c < 0, and so according to Section 2 the eccentric oscillations (7.2) are unstable at the boundary co -- 
¥2 + 3e/8+ • • • for sufficiently small e, while at the boundary co = 1/2 + 3e/8+ • . .  they are stable. 

We then transform the Hamiltonian (1.3) to the form (1.4) and obtain ~q = 0, ~:2 = -K = - 3/8. We then make 
the canonical change of variables u, ~ ~ 0, p using the formulae 

u-- (3p)~ s in(0-  v /2) ,  ~ =-(3p)/t2 cos(0-  v l  2) 

and changing to the new independent variable x -- 3ev/8 we arrive at the Hamiltonian (1.6) in which Y1 has the 
form (6.5), (6.6) where X = 4/(3e), and 

./I =-16"¢r6(sin~-x+sin3~.x)/9. f2 = 16~/6(cos~,x-cos3~,x)/9 

f3 = -16~/'6(sin ~ x -  si'nS~.x) / 27, f4 = -16~(-6(cos~,x-cos5~,x) 127 

The nature of the non-linear satellite oscillations near to its motion (7.2) can then be described as in Sections 4--6. 
In particular, we find that when estimating the width of the stochastic layer for the boundary t0 -- 1/2 + 3~/8+ . . . ,  
the constants ~, q ,p ,  ~ and ~ on the right-hand side of expression (6.9) take the numerical values 8~ ,/(3)/27, 1, 
3, rd2 and 1, respectively. For small e the width of the stochastic layer is of the order of e -1~ exp (-8/(15e)). 

This  r e sea rch  was p e r f o r m e d  with the  f inancial  suppor t  of  the  Russ ian  Founda t ion  for  Basic  Resea rch  
(93-013-16257) and  the  In t e rna t iona l  Science  F o u n d a t i o n  ( M F G  300). 
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